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Abstract 

 
A group of undergraduate students from BITS-Pilani are building a nanosatellite whose objective is to perform                

hyperspectral imaging of the oceans. This has never been carried out by a nanosatellite. The spectral distribution                 
shall help in categorizing various phytoplankton in the oceans. This is used to study the carbon cycle of the oceans,                    
which has an impact on the marine life. This paper describes the process of conceptualization, design and testing of                   
the Onboard Computer (OBC) Software for a 3U nanosatellite. The on-board computer of the satellite is responsible                 
for controlling the activities of all other subsystems, initiating dataflow between onboard hardware and performing               
mission critical computations like image compression. Control algorithms for fine pointing, sun pointing, ground              
pointing for payload operation and idle state detumbling run on the OBC. The actuation associated with this is                  
carried out by interfacing magnetorquers and reaction wheels with the OBC. The software of the onboard computer                 
is implemented on a Linux based operating system run on the ARM Cortex A9 processor which is part of the                    
Zynq-7000 SoC. A Field Programmable Gate Array (FPGA) is used specifically for image compression. The               
compressed image is stored in a serial flash memory shared between the camera and the FPGA. The architecture                  
comprises of a system-wide I2C bus to which various sensors like magnetometer, temperature sensor, Inertial               
Measurement Unit (IMU) etc. are interfaced. The collected data is used for logging followed by downlink, and as                  
input to algorithms used for pointing and detumbling. An SPI interface is used between the Power Subsystem                 
microcontroller and the On-Board Computer since a large amount of housekeeping data will have to be exchanged at                  
high rates. Also actuators namely, reaction wheels and magnetorquers are actuated by current driver circuits which                
get the control signals from the OBC. The satellite is modelled as a Finite State Machine for software development.                   
The states broadly fall under two categories, Normal and Emergency. Each state has a predetermined set of logical                  
tasks to be run, which are abstracted as separate processes in the memory. State transitions take place by polling the                    
health metrics of the satellite. However, hardware interrupts are implemented on selected peripherals which ensure a                
asynchronous switching to Emergency States for safety. A review of some common fault detection, isolation and                
removal methods used shall conclude the paper. 
 
Keywords: On board computer, Hyperspectral imaging, Field Programmable Gate Array, Image compression, Finite             
state machine. 
 
1. Introduction 

While arriving at the hardware and software       
architecture for this paper, various successful on board        
computer (OBC) designs were reviewed. An alternate       
name for the OBC is command and data handling         
system (CDHS). This name better describes the purpose        
of this system. However, depending on the mission        
objectives, various satellites have also used additional       
computing units for their payload. Hence each OBC        
design has been reviewed keeping in mind the nature of          
the mission. A similar review conducted by the team at          
CalPoly has also been referred to [1]. Section 2 of this           
paper describes the hardware layout of the OBC, section         
3 elucidates the various operational modes of the        

satellite, section 4 describes the software architecture       
and the levels of abstraction therein, section 5 describes         
the kernel level modifications and custom modules       
developed, and section 6 highlights some measures       
taken to inculcate fault tolerance in the system. 
 
2. Hardware Architecture 

The payload for this mission is a hyperspectral        
camera, which will capture a region in the Bay of          
Bengal. The number of bands of wavelengths (150 in         
this system) captured by camera decides the size of the          
image. The image size ranges around 400 megabytes        
and transmitting such a large amount of data from a          
nanosatellite is very difficult, considering the bandwidth       
constraints and flyby time over the ground station. This         
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necessitates image compression on board. High      
performance compression coupled with low power      
consumption, and a soft real time constraint on the data          
handling and command execution hints at the use of         
multiple computing units which will be used for specific         
tasks and can be switched off independent of each other. 

The OBC hence consists of a board for CDH, an          
FPGA for image processing pertaining to the payload,        
and the interfaces from the CDH board to the various          
sensors and actuators for exchanging data as per the         
corresponding subsystem requirements. The complete     
hardware block diagram is shown in Fig. 1. 
 
2.1 Computing unit for CDH 

The computing unit for CDHS is designed keeping        
in mind the use cases and the computational capacity of          
the other subsystems. Apart from data handling and task         
scheduling, this board also runs the control algorithms        
written to ensure the rotational stability of the satellite         
in orbit. Hence the actuators associated with the same         
(viz. reaction wheels and magnetorquers) are interfaced       
directly with this board. Since the telemetry subsystem        
has its own microcontroller, the transceiver is not        
interfaced with this board. Furthermore, the power       
subsystem also has its own microcontroller (MSP-430,       
developed by Texas Instruments). This will be       
responsible for booting up the OBC system.  

The Zynq-7000 SoC developed by Xilinx has been        
chosen for the CDH unit. It consists of a dual core ARM  
Cortex A9 processor clocked at 800Mhz. 

 
2.2 Bus interfaces for CDH 

The CDH is interfaced to various sensors on the         
inter-integrated circuit (I2C) bus, owing to the ease of         

development and the availability of CMOS sensors with        
I2C interface for data read. SPI bus has been used in           
cases where relatively larger data is transferred.       

Specifically, in the interface between the CDH unit and         
the electrical and power subsystem microcontroller      
(MSP-430). This interface will provide the CDH with        
all the housekeeping data required for logging. SPI will         
also be used to transfer images from the flash memory          
to the FPGA for compression and then back to another          
flash memory. 

 
2.3 Computing unit for image processing 

The Programmable Logic (inbuilt to Zynq-7000) is       
used for image compression. This FPGA is programmed        
to read image data in bursts using a custom SPI soft           
controller from a flash memory, perform hyperspectral       
image compression using CCSDS123 lossless     
hyperspectral compression algorithm, and finally write      
the compressed data back to another flash memory [2].         
This has been done in order to speed up the          
compression process by pipelining it at a hardware        
level. Furthermore, it is necessary to keep the CDH unit          
operational at all times for attitude stabilization and        
logging. Such a separate computing unit for payload        
ensures that the CDH unit can carry out its tasks          
asynchronously. Use of FPGA also necessitates      
radiation hardening measures. A literature review has       
been carried out and measures like scrubbing will be         
implemented [3]. Section 6 deals with this in more         
detail. 
 
3. Modes of operation 

The functioning of the satellite can be represented as         
a finite state machine in which there are a set of           
states/modes and depending on certain conditions or       
health parameters, (such as power level, angular       
frequency of rotation etc) the satellite will switch        

among the modes. There is a certain (disjoint) set of          
modes that represent anomalies (“Emergency Modes”).      
Polling the metrics mentioned above will determine       
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which mode to switch to. However, in order to reduce          
the response time, switching to the emergency modes        
will be interrupt based. These interrupts will be        
generated by the relevant hardware or by relevant        
software which detect the crossing of critical thresholds.        
The interrupts may be handled by custom built drivers.         
Each of these modes has a set of tasks that need to be             
run when the satellite is in the given mode.  

 
4. Software architecture 

The software is organized into 3 levels of abstraction         
above the Petalinux operating system used. In addition        
to this, some drivers have also been developed and         
integrated with the vanilla kernel. This architecture is in         
contrast with the multithreaded model used in       
AAUSAT-3 [4]. The following sections elucidate the       
various layers of abstraction in a top-down order and         
Fig 2. illustrates the same.    

 
 
4.1 The flightplan process 

The topmost level of abstraction is a single        
process (called “Flightplan”) that represents the      
mode of operation of the satellite, which in turn         
determines the tasks to be executed. The       
Flightplan process is responsible for scheduling,      
executing and tracking all the logical tasks that        
need to be done in a particular mode. This         
process is polymorphic in the sense that for        
every mode of operation, this process will       
superimpose different executable process images     
(using execv command) but will represent the       
same process in the memory. The Flightplan       
process forks and executes multiple child      
processes that form the middle layer described in        
the next subsection. This is done at a        
predetermined frequency of execution for each      
process/task. The tasks are put in a list, ordered         
by next time of execution. A task is forked and          
executed as a child process when it is at the front of the             
list and: 

1. The current system time is greater than or equal to           
the time of next execution. 

2. There is no child process running in the system          
that is doing the same task. 

Once the process has been forked and executed, it is          
put back in the list as per the next time of execution.            
The list mentioned above also contains metadata about        
each child process including but not limited to its PID &           
frequency of execution. This is particularly useful when        
the process terminates. To handle the zombie process, a         
custom SIGCHILD handler has been implemented      
(non-blocking). This updates the metadata about the       
process by waiting on it. This concept of signal         
handling will be extended to use the SIGRTXXX        
signals to model software interrupts among the different        
processes [5]. It will successfully replace the need for         
any form of interprocess communication mechanism.      
Switching amongst the modes takes place by adding an         
extra node (“check” node) to the list mentioned above.         
When this node is at the front of the list, a set of             
parameters will be checked and conditional switching       
will take place among the modes. If the Flightplan         
decides to switch, it will have to wait for the existing           
children to terminate. This is another reason why the         
metadata of each child must be stored in the parent. 

 
4.2 Mode-specific subtasks 

Various logically independent tasks need to be       
carried out in each mode as shown in Fig. 3. These tasks            
are implemented as separate processes in the memory.        
These tasks call a set of userspace functions that wrap          
around the driver attribute functions using the ioctl()        
call. This ensures that the developers can continue to         

develop them independently of the driver functions       
being implemented. It also makes debugging easier. The        
control algorithms that detumble the satellite are also        
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implemented at this level. In a mode, only one control          
algorithm is run. As mentioned above, it uses the         
userspace functions to gather data from the sensors and         
also to send the Pulse Width Modulated (PWM) wave to          
a driver circuit for actuation. 
 
4.3 Userspace functions for bus access  

The lowermost layer of abstraction consists of a set         
of modules for device access on the specified buses.         
This provides the required abstraction from the device        
datasheet specifications while implementing the     
mode-wise subtasks that use the particular device. There        
is a set of character drivers in the kernel, some of which            
are developed by the team. These are accessed using the          
attribute functions that they export. These functions are        
called using preset macros within the ioctl() command.        
The userspace functions corresponding to the device in        
question implement these ioctl calls and format the data         
as per the usage. Such a modular design also helps          
incorporate fault isolation techniques. 
 
This software design hence provides a fair amount of         
modularity. It also achieves the required amount of        
parallelism leading to an increase in efficiency. It is also          
possible to scale this horizontally in the middle layer for          
more tasks and vertically for more abstraction if need         
be. The flip-side is difficulty in synchronisation and        
mutual exclusion among the processes that form the        
middle layer if need arises. However, at the time of          
writing, an exhaustive set of tasks has been proposed         
that does not require mutual exclusion (other than that at          
kernel level which has been implemented in the device         
drivers or bus controller driver).  
 
5. Kernel modules for data transfer  

The OBC is required to gather housekeeping data         
from various peripherals interfaced on the I2C and SPI         
buses. Due to unavailability of required device drivers        
in the vanilla kernel, custom drivers have been        
developed that provide the required abstraction to the        
top level software layers. Drivers are represented as        
modules in the Linux kernel, which essentially extends        
the functionality of the underlying operating system [6].        
The role of device drivers can be divided into two parts: 

1. Communicating with the hardware to get the       
relevant data and storing the data in the kernel         
space. 

2. Providing an interface between the kernel      
space and user space for providing the data to         
user applications. 

The Linux kernel is organised into subsystems, each         
subsystem acts as a wrapper to the underlying hardware         
functions. A bus controller driver mediates the       

communication between the client drivers and actual       
hardware.  
 
5.1 User space interface  

The data can be communicated to the user space          
either by using the virtual filesystem, SysFs or by using          
the character driver API. In SysFs, every virtual file is          
tied to a kobject which can be used to export          
information from kernel space to the user space. A         
device driver can use SysFs to create a one-to-one         
correspondence between the data registers and virtual       
files. The user space application is hence required to do          
multiple file input/ output operations which can be a         
tedious task for an application in the absence of         
standard libraries such as libudev which are not present         
due to the usage of mdev in the kernel of the Petalinux            
operating system. A char driver is represented as a file          
in the Linux filesystem. A device can be controlled         
using the ioctl() calls and therefore leads to        
uncomplicated code in the user space. The       
representation of devices as files has been chosen for         
our purposes due to easier management and scalability        
of the user space code. 
 
5.2 SPI Controller Driver 

A flash based memory has been chosen for the storage           
of raw hyperspectral image data. This memory is        
interfaced with the OBC using the SPI bus. An SPI          
controller in the PL fabric acts as an interface between          
the memory and hyperspectral image compression IP.       
The SPI controller is responsible for transferring the        
data from flash memory to a block RAM in the FPGA.           
An SPI controller driver has been developed which is         
required to communicate to the SPI controller using the         
AXI interconnect between PS and PL. The driver will         
send the start address of the memory block in the flash           
memory. The SPI controller has been designed to        
generate the required opcodes and transfer the data in         
bursts. The SPI controller will generate an interrupt        
upon the completion of a burst data transfer. An         
interrupt handler divided into top and bottom halves, are         
tasked with sending of the next memory block address         
upon receiving an interrupt [7]. The top and bottom         
halves approach reduces the latency and effect of        
interrupts on the preempted task. 
 
5.3 Bus Protocol Drivers 

The I2C and SPI subsystems provide functionalities        
to the user space for communication over the I2C and          
SPI buses, respectively. A set of I2C client drivers were          
developed for the slave devices on the I2C bus [8]. Each           
of the slaves is represented as a node inside the bus           
controllers in the device tree. The SPI subsystem is         
divided into master and slave drivers [9]. Each device         
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on the SPI bus is handled by a slave driver which itself            
uses the abstraction layer provided by the SPI master         
driver. The shared memory that stores the housekeeping        
data to be downlinked will be managed by an SPI          
protocol driver. This driver is linked to kernel space by          
the character driver interface. The memory doesn’t       
employ a file system due to unavailability of an         
operating system on the telemetry micro controller unit.  
 
 6. Fault tolerance methods  

Various methods for fault tolerance/isolation and      
removal are inculcated in the current model. Major        
points of vulnerability include, radiation tolerance of the        
SRAM based FPGA and flash memories, and bus        
failure. Furthermore, the CDH unit may also enter a         
non-responsive state or suffer a memory corruption. The        
following measures are implemented for fault tolerance       
as per above areas of focus. Watchdog timer shall         
safeguard against any and all CDH failures, and bus         
failures. 

 
6.1 Watchdog timer 

The watchdog timer is conventionally a hardware       
timer that is reset (“kicked”) at a predefined regular         
time interval. If it is not reset before it expires, the           
default action is to reset the hardware that was supposed          
to reset it. A watchdog timer exists on the         
Microcontroller unit of the Electrical and Power       
Subsystem (EPS) which is interfaced with the OBC via         
a GPIO pin specifically meant for this (other than the          
aforementioned SPI interface). If that timer is not reset         
by the OBC, then it is the responsibility of the EPS to            
perform a power cycle on the OBC. This however, is a           
very expensive operation. To avoid system reboots for        
minor faults, a hierarchy of watchdog timers has been         
proposed. This allows for fault isolation. The lowermost        
level of the hierarchy is the physical timer on the MCU           
of the EPS as discussed. It will be reset by sending a            
signal on the GPIO pin. This is critical while booting up           
the OBC. The timer reset for the EPS watchdog will be           
performed by a user space function call (which in turn          
calls hardware function for the GPIO interface). The        
software watchdog has the exclusive access to this        
userspace function and hence it forms the second layer         
of the aforementioned hierarchy. The software      
watchdog will be implemented as a second thread        
within the Flightplan process. The following reasons       
justify this design: 

● The processes being watched are children of       
this process. They can easily check in at        
specified frequencies by sending a signal to the        
parent which will be handled by a specific        
handler built for this purpose. The handler will        

write to a particular memory location      
corresponding to each child process.  

● In case the process fails to check in, the         
Flightplan’s watchdog thread can send a      
SIGTERM signal to the child and terminate       
execution. This is possible because the linked       
list node contains metadata about each process       
which includes its process ID. SIGCHLD      
signal will be received by the main thread of         
the Flightplan as soon as child dies. It will         
update this information in the linked list node. 

  
6.2 Radiation associated fault tolerance for FPGA 

The Single Event Effects (SEE) commonly lead to        
radiation related failures in the FPGA and flash        
memories. These are characterized into single event       
upset (SEU) and single event latchup (SEL). SEU        
occurs when a high energy radiation particle has enough         
energy to generate free charge carriers and change the         
state of a logic line and hence affect the state of a            
memory cell or a flip flop. SEL is said to occur when an             
extremely high energy radiation strikes and causes a        
short circuit. This leads to permanent damage to the         
component. As mentioned above, the current design       
consists of a Programmable Logic in the Zynq-7000        
which is a SRAM based FPGA. SRAM-based FPGAs        
are sensitive to radiation found in most satellite orbits.         
Single Event Upsets in FPGA affect the user designed         
flip flops, the FPGA bit stream that is stored in the           
configuration memory, and some of the hidden FPGA        
latches, registers or the internal state [10]. The upsets         
that occur within the PL Fabric can be undone by          
resetting but the upsets encountered in the       
configurational memory require reconfiguration    
followed by a complete system reset. Some of the ways          
to operate FPGAs in radiation environment is to make         
use of active mitigation techniques and configuration       
scrubbing [11]. Triple-modular redundancy (TMR) is      
one of the active mitigating techniques which involves        
tripling the circuitry and inserting the voters to choose         
amongst the three. This method can be used for         
protecting against all types of single-bit failures and        
many multi-bit failures. Configuration scrubbing     
involves rewriting the configuration data periodically      
into the configuration memory to repair      
radiation-induced upsets. Though this method does not       
provide mitigation from radiation effects but it prevents        
building up of single event upsets overtime and thus         
breaking down of mitigation techniques like TMR. The        
major disadvantage of TMR is the excessive power        
usage and implementation complexity. The current      
proposal is hence to include configuration scrubbing. 
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6.3 Radiation associated fault tolerance for flash       
memory 

Flash memories are inherently susceptible to      
radiation. Hence, one additional boot image is stored in         
an EEPROM (electrically erasable programmable read      
only memory). This provides for the option to update         
software on the flash while having a fallback in the          
EEPROM that has been tested heavily before launch. It         
is proposed to implement memory scrubbing for the        
flash memory storing the image data and the health         
metrics for downlinking. Memory scrubbing will be       
implemented using error correcting codes like the       
hamming code. This can be done by running a         
maintenance process in the background. 
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